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What is HexSim?



It was designed for evaluating wildlife
population responses to human activities.

It balances generality and flexibility
with parsimony and ease of use.

It can be used with a large range of
places, problems, and questions.

It is a computer simulation model.
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Using HexSim in Ecological Research



Significant Challenges

Disturbance. Can vary in space and time;
there can be multiple; they often interact

Landscapes. They are dynamic; structure
matters; features change with life history





Populations. They have complex, diverse
life histories, and can interact



Methodology. Must be defensible and
usable, plus have value to decision-makers





How is HexSim Different?

Can simulate population interactions, stressor
interactions, landscape genetics, and more

It contains no simplifying assumptions about
the biology or ecology of the study systems





Every individual can have unique properties
that change throughout their lifetimes



Modern and easy to use, with graphical user
interfaces (GUI) for every model component



It has a wide range of potential applications.



HexSim Fundamentals

 Spatially-Explicit and Individual-Based

 Landscapes can Change Continuously

 No Built-In Assumptions or Rules

 Multi-Population with Interactions

 Multi-Stressor with Interactions

 Females-only or 2-Sex Simulations

 Life History Events Stratified by Traits



Why Hexagons?

Each of a hexagon’s neighbors is the
same distance away.



They provide a space-filling tesselation



Model Inputs

Disturbance Regimes. Spatial, temporal,
simple, complex, local, regional, etc...

Spatial Data. Can be real or fabricated, one
or multiple layers, static or time series...





Life History Data. Can be real or fabricated
or a hybrid. Data limits model complexity...



Stochasticity. Demographic, environmental,
life stage-specific, spatially-distributed, etc...





Model Outputs

Map-Based Reports. Map files illustrating
population performance and interactions.

Census Data. Chronological records of user-
defined population metrics.





Tabular Reports. CSV files detailing observed
vital rates, movements, interactions, etc.



Videos. Movies showing movement, resource
acquisition, occupancy by trait class, etc.





 Survival
 Reproduction
 Movement
 HexMap Generation
 Species Interaction
 Species Introduction
 Mutation
 And so on...

 Probabilistic Traits
 Accumulated Traits
 Genetic Traits

Trait
Types

Life History
Events
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A Hypothetical HexSim Scenario

 Movement barriers
affect survival rates
because they can limit
the spread of the disease

 Disturbance affects fitness,
which in turn
impacts disease
status, survival,
and reproduction

of Moderate-Complexity

Landscape
Structure



HexSim Genetics



User-defined initial conditions, include
spatial stratification of alleles

Populations can have any number of loci



 Each locus can have any number of alleles

Inheritance can be from mother, father,
or from both parents (per locus)



 Each individual is assigned a genotype



HexSim Genetics (cont.)

 Heritable traits may be neutral or adaptive

Heritable and other traits may be combined
to influence life history events



Map-distances may be used to simulate
chromosome crossover



Mutation events my be influenced by
non-heritable traits (e.g. exposure)





Example: Predators & Prey



Predator males disperse towards prey
Predator females disperse towards males

Predator capture efficiency is controlled
through a heritable trait.

Two interacting populations





 Prey live in colonies, predators do not

 Predators & prey use different mating schemes

 Mutation alters capture efficiency trait

Capture efficiency influences reproduction
through a resource acquisition trait
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Some PATCH / HexSim Applications

 Ord’s Kangaroo Rats

 Lyme Disease

 Kit Foxes

 Pileated Woodpeckers

 Desert Tortoise

 Black-capped Vireos / Cowbirds

 Spotted Owls

 Wolves

 Elk

 Fishers

 Martin



Ord’s Kangaroo Rats (Alberta)
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STATE OF WASHINGTON      September 2004 

Washington Department of 
FISH AND WILDLIFE 
Wildlife Program 

Fisher
Reintroduction

Table 13.  Median number of female fishers predicted by the PATCH model to be supported on 
potential reintroduction areas in the Olympic Peninsula, Northwestern Cascades, and Southwestern 
Cascades.  Values were derived from 20 replicate simulations started with 30, 60 and 100 female 
fishers; male presence is assumed in the model. 

Median number of female fishers supported 
Simulation specifications 

Leslie matrices used1 Simulation length 
Olympic

 Peninsula
Southwestern

Cascades
Northwestern 

Cascades
30 Females Reintroduced 

20 years 82.5 36 25 
Single Mean 40 years 94 33.5 19.5 

20 years 81.5 35 17 
Six Random 40 years 84.5 29.5 17 

60 Females Reintroduced 
20 years 93.5 48 26.5 

Single Mean 40 years 92 36.5 21 
20 years 90.5 49.5 27.5 

Six Random 40 years 87.5 25 21 
100 Females Reintroduced 

20 years 98.5 59.5 31 
Single Mean 40 years 96 43.5 20 

20 years 102 54.5 30.5 
Six Random 40 years 87 44.5 23.5 

100 Females Reintroduced, additional specifications for sensitivity testing2

20 years 101.5 57.5 32 Single Mean, 25 km 
maximum dispersal 40 years 97.5 48 24 

20 years 98.5 55 30 Single Mean, 75 km 
maximum dispersal 40 years 96 40 22.5 

20 years 50.5 6 4.5 Single Mean, low habitat 
scores 40 years 51.5 0 0 
1 Two matrix scenarios were used in simulations.  The single mean simulations were run with 1 Leslie matrix with mean values for
survival and fecundity.  The six random matrix simulations used four matrices of mean survival and fecundity values, one matrix with 
low values, and one matrix with high values; one of these six matrices was chosen at random each year of a simulation to incorporate 
environmental stochasticity. 
2 Three alternative simulations were run to test the sensitivity of the model to: a smaller maximum dispersal distance of 25 km, a larger 
maximum dispersal distance of 75 km, and lower habitat scores for suboptimal habitats. 



Baseline Evaluation of 
Fisher Habitat and Population Status 
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U.S. Fish & Wildlife Service

2010 Draft Revised Recovery Plan 
for the Northern Spotted Owl 
(Strix occidentalis caurina)

 

Spotted Owl
Recovery
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Process Varies with Location

Spotted Owl
Modeling
Regions
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